QUINAZOLINES. 2*. UNSYMMETRIC 1,3-DIALKYL-6-CHLOROSULFONYL-QUINAZOLINE-2,4-DIONES IN NUCLEO-PHILIC SUBSTITUTION REACTIONS

R. Sh. Kuryazov¹, N. S. Mukhamedov¹*, and Kh. M. Shakhidoyatov¹

The corresponding 6-chlorosulfonylquinazoline-2,4-diones were synthesized by the reactions of 1-methylquinazoline-2,4-dione and its 3-alkyl-substituted derivatives with chlorosulfonic acid. Treatment of the products with nucleophilic agents (water or ammonia, aliphatic and cyclic amines) gave 2,4-dioxoquinazolin-6-sulfonic acids or their amides.

Keywords: amides of 2,4-dioxoquinazoline-6-sulfonic acid, 2,4-dioxoquinaxoline-6-sulfonic acids, unsymmetrical 1,3-dialkylquinazoline-2,4-diones, 6-chlorosulfonylquinazoline-2,4-diones, nucleophilic and electrophilic substitution.

High biological activity and the wide spectrum of activity of derivatives of quinazoline [2-7] has resulted in a considerable interest in them. Recently we carried out the chlorosulfonation of symmetrical 1,3-dialkylquinazoline-2,4-diones and studied some chemical conversions of the 6-chlorosulfonyl derivatives produced [1]. In a continuation of our study on the electrophilic substitution of this series of compounds we have studied the chlorosulfonation of unsymmetrical 1-methylquinazoline-2,4-dione (1) and its 3-alkyl-substituted derivatives **2a,b** and also the behavior of the 6-chlorosulfonyl derivatives **3a-c** obtained with respect to nucleophilic reagents.

The starting compound was not successfully obtained by direct alkylation of quinazoline-2,4-dione because of the formation of a complex mixture of products, so it was made by cyclization of N-methyl-anthranilic acid (4) with sodium cyanate in basic media. Unsymmetrical 3-alkyl-1-methylquinazoline-2,4-diones **2a,b** were synthesized by subsequent alkylation of compound **1** with alkyl iodides in conditions of phase-transfer catalysis [8].

We have shown that, like the symmetrical 1,3-dialkylquinazoline-2,4-diones [1], their unsymmetrical analogs **1** and **2a,b** reacted with chlorosulfonic acid to give the corresponding 6-chlorosulfonyl derivatives **3a-c**. The intermediate 2,4-dioxoquinazoline-6-sulfonic acids **5a-c** were not isolated, despite variation in the composition of the reagents and the conditions of the reaction.

¹Acad. S. Yu. Yunusov Institute of Vegetable the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100170, Republic of Uzbekistan.

Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 12, 1870-1877, December, 2009. Original article received October 17, 2008. Revised version received March 17, 2009.

1508

0009-3122/09/4512-1508©2009 Springer Science+Business Media, Inc.

^{*} For Communication 1 see [1].

^{**} To whom correspondence should be addressed, e-mail: nasirxon@rambler.ru.

2 a R = *n*-Pr, b R = *n*-Bu; **3**, **5** a R = H, b R = *n*-Pr, c R = *n*-Bu; **6a**-c R¹ = H, a R = H, b R = *n*-Pr, c R = *n*-Bu; **7**, **8** a, d R = H, b, e R = *n*-Pr, c, f R = *n*-Bu; **7a**-c R¹ = Et, d-f R¹ = *n*-Bu; **8 a**-c R¹ + R¹=(CH₂)₅, d-f R¹ + R¹=(CH₂)₂O(CH₂)₂

The sulfonic acids **5a-c** were synthesized in high yields (Table 1) by hydrolysis of the corresponding 6-sulfonyl chlorides **3a-c**. It was established that the rate of hydrolysis depended on the substituent R. For example, if it was sufficient for conversion of the sulfonyl chloride **3a** (R =H) into the sulfonic acid **5a** to heat the reaction mixture for 2 h, hydrolysis of compounds **3b,c** (b R = *n*-Pr, c R = *n*-Bu) required 4 and 6 h respectively.

The sulfonic acids **5a-c** were easily converted into the corresponding chlorosulfonyl derivatives **3a-c** in almost quantitative yields by treatment with chlorosulfonic acid.

The reactions of compounds **3a-c** with ammonia, aliphatic and cyclic amines occurred readily and did not depend on the substituent R. Treatment of the sulfonyl chlorides **3a-c** with a concentrated aqueous solution of ammonia led to the corresponding 6-sulfamidoquinazoline-2,4-diones **6a-c**. On reaction of compounds **3a-c** with aliphatic amines in the presence of triethylamine at room temperature N,N-dialkylamides of 2,4-dioxo-6-sulfonic acids **7a-f** were formed and with piperidine and morpholine the N-piperidino- and N-morpholinosubstituted amides **8a-f** of the same acids respectively were formed.

The compositions and structures of compounds **3**, **5-8** were confirmed by IR and ¹H NMR spectroscopy, mass spectrometry, and the results of elemental analysis.

In the IR spectra of compounds **3**, **5-8** there are bands characteristic of absorptions of asymmetric and symmetric vibrations of the SO₂ group in the 1100-1400 cm⁻¹ region. In the case of the sulfonic acids **5a-c** there are also bands for the absorption of the stretching of the S-O group (600-700 cm⁻¹ (Table 2).

In the mass spectra of the quinazolinediones **3**, **5-8** there are peaks of the molecular ions and fragments which completely confirm the proposed structure. Independent of the nature of the substituent R and the character of the amide substituent, these spectra show a uniform fragmentation with rupture of the SO₂-N(R¹)₂ bond and the formation of fragments **A** [M⁺-N(R¹)₂] and **B** [N(R¹)₂].

It should be noted that in the case of compounds **6a-c** and **8a-c** the molecular ion M^+ is the maximum peak, whereas in the compounds **7a-f** and **8d-f** it is the peak for fragment A. In the case of fragmentation the sulfonic chloride **3a** with no substituent at position 3, rupture of the S-Cl bond occurs whereas in the alkylated derivatives **3b,c** the 3-R substituent is lost.

TABLE 1. Physicochemical Characteristics of the CompoundsSynthesized, 3, 5-8

Com-	Empirical	Found, %	mp °C (solvent	Yield, %
pound	tormula	Calculated, %	tor recrystallization)	
3a	C ₉ H ₇ ClN ₂ O ₄ S	9.87	208-210	86*
	· · - ·	10.20	(heptane)	
3b	$C_{12}H_{13}CIN_2O_4S$	9.15	136-138	88*
		8.84	(hexane)	
3c	$C_{13}H_{15}ClN_2O_4S$	<u>8.26</u>	128-130	94*
		8.47	(benzene)	
5a	$C_9H_8N_2O_5S$	<u>11.25</u>	314-316	96
		10.93	(water)	
5b	$C_{12}H_{14}N_2O_5S$	$\frac{9.12}{9.22}$	220-222	88
		9.39	(water)	
5c	$C_{13}H_{16}N_2O_5S$	<u>9.22</u>	113–115	85
	a u v o a	8.97	(water)	
6a	$C_9H_9N_3O_4S$	$\frac{16.21}{16.47}$	338-340	41
a	C H N O S	10.47		76
6D	$C_{12}H_{15}N_3O_4S$	$\frac{13.85}{14.14}$	204-200	/6
6	CUNOS	14.14		96
0C	$C_{13}H_{17}N_3O_4S$	$\frac{13.11}{13.50}$	212-214 (aqueous ethanol)	80
7.	CHNOS	12.00		80
/a	$C_{13}I_{17}I_{3}O_{4}O_{4}O_{5}$	$\frac{13.69}{13.50}$	(methanol)	09
7h	C. H. N.O.S	12.21	200-202	94
70	0161123113040	$\frac{12.21}{11.89}$	(methanol)	74
76	CuaHarNaO4S	11.68	162-164	83
<i>n</i> c	01/11/251 (3040	$\frac{11.08}{11.44}$	(aqueous methanol)	05
7d	C17H25N2O4S	11.09	186-188	89
	01/11/20140	11.44	(ethanol)	0,
7e	C20H31N3O4S	10.58	202-204	90
	- 20 51 55 15	10.26	(aqueous methanol)	
7f	$C_{21}H_{33}N_3O_4S$	10.23	180-182	86
		9.92	(aqueous ethanol)	
8a	$C_{14}H_{17}N_3O_4S$	12.77	320-322	90
		13.00	(ethanol	
8b	$C_{17}H_{23}N_3O_4S$	<u>11.81</u>	224-226	70
		11.50	(aqueous methanol)	
8c	$C_{18}H_{25}N_3O_4S$	<u>10.83</u>	204-206	87
		11.08	(aqueous methanol)	
8d	$C_{13}H_{15}N_3O_5S$	<u>13.20</u>	334-336	80
		12.92	(benzene)	
8e	$C_{16}H_{21}N_3O_5S$	<u>11.68</u>	194-196	91
		11.44	(ethanol)	
8f	$C_{17}H_{23}N_3O_5S$	$\frac{10.74}{11.02}$	170-172	98
		11.02	(aqueous methanol)	

* Yield by method A.

Compound	IR spectrum, v, cm	Mass spectrum,	
Compound	$SO_2(as)$, $SO_2(s)$, C–S	S–O, NH ₂	m/z (I_{rel} , %)
3a	1370, 1180, 710	—	274 [M] ⁺ (82) (for ³⁵ Cl)
3b	1365, 1170, 720	—	316 [M] ⁺ (72)
3c	1375, 1175, 725	—	330 [M] ⁺ (78)
5a	1233, 1063, 744	650	256 [M] ⁺ (45)
5b	1245, 1026, 733	670	298 [M] ⁺ (47)
5c	1247, 1026, 728	675	312 [M] ⁺ (44)
6a	1338, 1164, 756	3565	255 [M] ⁺ (100)
6b	1345, 1164, 749	3370	297 [M] ⁺ (100)
6c	1365, 1168, 752	3360	311 [M] ⁺ (100)
7a	1366, 1175, 744	—	311 [M] ⁺ (13)
7b	1358, 1161, 748	—	353 [M] ⁺ (15)
7c	1338, 1161, 751	—	367 [M] ⁺ (20)
7d	1341, 1166, 752	—	367 [M] ⁺ (18)
7e	1340, 1160, 749	—	409 [M] ⁺ (19)
7f	1339, 1160, 750	—	423 [M] ⁺ (22)
8 a	1342, 1166, 749	—	323 [M] ⁺ (100)
8b	1342, 1165, 747	—	365 [M] ⁺ (100)
8c	1342, 1166, 749	—	379 [M] ⁺ (100)
8d	1345, 1153, 743	—	325 [M] ⁺ (7)
8e	1348, 1165, 748	—	367 [M] ⁺ (10)
8f	1348, 1164, 748	—	381 [M] ⁺ (9)

TABLE 2. Spectral Characteristics of Compounds 3, 5-8

In the ¹H NMR spectra of compounds **3**, **5-8** (Table 3) there are characteristic signals of the protons of the quinazoline unit: the H-5 doublet at 8.13-8.34 (${}^{3}J = 2.2-2.3$ Hz), a doublet of doublets for H-7 at 7.92-8.04 (${}^{3}J = 8.6-9.0$ and ${}^{4}J = 2.2-2.3$ Hz) and also a doublet for H-8 at 7.32-7.62 ppm (${}^{3}J = 8.6-9.0$ Hz). The signal of the protons of the alkyl substituents R and R¹ appear at relatively strong field (0.46-3.57 ppm) and the proton of the NH group at weak field (11.66-11.83 ppm).

EXPERIMENTAL

IR spectra of Nujol mulls were recorded on a Perkin-Elmer 2000 Fourier spectrometer, ¹H NMR spectra of CD₃COOD solutions with TMS as internal standard on Unity 400^+ (400 MHz) machine. Mass spectra were recorded on a Kratos MS-30 machine with direct insertion into the ion source (energy of ionization 70eV). The course of reactions and purity of the compounds synthesized were monitored by TLC on Silufol UV-254 strips with a 10:1 benzene-acetone eluant, and development with 1 g KMnO₄ in 4ml H₂SO₄ and 96 ml H₂O.

1-Methylquinqzoline-2,4-dione (1). Sodium cyanate (0.91 g, 14 mmol) in water (18 ml) was added to a solution of N-methylanthranilic acid (4) (1.51 g, 10 mmol) and acetic acid (0.1 ml) in water (53 ml) with stirring. The temperature of the reaction mixture reached 40°C and NaOH (11.68 g, 292 mmol) was added in portions, the reaction temperature reaching 75°C. Stirring was continued without cooling for 4 h, after which the crystals were filtered off and dissolved in boiling water (30 ml). The solution was carefully acidified with ~50% H₂SO₄ to pH 1-2. The precipitated crystals were filtered off, washed with water and recrystallized from 50% MeCOOH to give compound **1** (1.47 g, 84%); mp 276-278°C (mp 277-279°C [9]).

3-Alkyl-1-methylqunazoline-2,4-diones 2a,b. An alkyl iodide (15 mmol) was added to a mixture of compound **1** (1.76 g, 10 mmol), a solution of NaOH (2 g, 50 mmol) in water (20 ml), tetrabutylammonium bromide (1.28, 4 mmol) and benzene (40 ml). The reaction mixture was heated to 60°C and held at this

TABLE 3. ¹H NMR Spectra of Compounds 3, 5-8

Com- pound	¹ H NMR spectrum, δ , ppm (<i>J</i> , Hz)
1	2
3a	11.86 (1H, s, NH); 8.26 (1H, d, <i>J</i> _{5,7} = 2.2, H-5);
21	7.95 (1H, dd, $J_{7,5}$ = 2.2, $J_{7,8}$ = 8.6, H-7); 7.40 (1H, d, $J_{8,7}$ = 8.6, H-8); 3.44 (3H, s, 1-CH ₃)
36	8.29 (1H, d, $J_{5,7} = 2.2$, H-5); 7.96 (1H, dd, $J_{7,5} = 2.2$, $J_{7,8} = 8.6$, H-7); 7.35 (1H, d, $J_{8,7} = 8.6$, H-8); 3.95 (2H, t, $J = 7.2$, $3-CH_2CH_2CH_3$); 3.51 (3H, s, 1-CH ₃); 1.64 (2H, m, 3-CH ₂ CH ₂ CH ₃); 0.87 (3H, t, $J = 7.2$, 3-CH ₂ CH ₂ CH ₃)
3c	8.25 (1H, d, $J_{5,7}$ = 2.2, H-5); 7.92 (1H, dd, $J_{7,5}$ = 2.2, $J_{7,8}$ = 8.6, H-7); 7.40 (1H, d, $J_{8,7}$ = 8.6, H-8); 3.90-3.96 (2H, m, 3-CH ₂ C ₃ H ₇); 3.50 (3H, s, 1-CH ₃); 1.55 (2H, m, 3-CH ₂ CH ₂ CH ₃); 1.31 (2H, m, 3-CH ₂ CH ₂ CH ₂ CH ₃); 0.90 (3H, m, 3-C ₃ H ₆ CH ₃)
5a	11.67 (1H, s, NH); 8.19 (1H, d, $J_{5,7}$ = 2.2, H-5); 7.95 (1H, dd, $J_{7,5}$ = 2.2, $J_{7,8}$ = 8.9, H-7); 7.31 (1H, d, $J_{8,7}$ = 8.9, H-8); 3.35 (3H, s, 1-CH ₃)
5b	8.21 (1H, d, $J_{5,7}$ = 2.2, H-5); 7.96 (1H, dd, $J_{7,5}$ = 2.2, $J_{7,8}$ = 8.9, H-7); 7.32 (1H, d, $J_{8,7}$ = 8.9, H-8); 3.97 (2H, t, J = 7.2, 3-CH ₂ CH ₂ CH ₃); 3.37 (3H, s, 1-CH ₃); 1.69 (2H, m, 3-CH ₂ CH ₂ CH ₃); 0.89 (3H, t, J = 7.2, 3-CH ₂ CH ₂ CH ₃)
5c	8.20 (1H, d, $J_{5,7} = 2.2$, H-5); 7.95 (1H, dd, $J_{7,5} = 2.2$, $J_{7,8} = 8.9$, H-7); 7.32 (1H, d, $J_{8,7} = 8.9$, H-8); 3.91–3.97 (2H, m, 3-C <u>H</u> ₂ C ₃ H ₇); 3.37 (3H, s, 1-CH ₃); 1.57 (2H, m, 3-CH ₂ C <u>H</u> ₂ C ₂ H ₅); 1.32 (2H, m, 3-C ₂ H ₄ C <u>H</u> ₂ CH ₃); 0.91 (3H, m, 3-C ₃ H ₆ C <u>H₃</u>)
6a	11.66 (1H, br. s, NH); 8.34 (1H, d, $J_{5,7}$ = 2.2, H-5); 8.04 (1H, dd, $J_{7,5}$ = 2.2, $J_{7,8}$ = 8.9, H-7); 7.54 (1H, d, $J_{8,7}$ = 8.9, H-8); 3.41 (3H, s, 1-CH ₃)
6b	8.32 (1H, d, $J_{5,7}$ = 2.2, H-5); 8.03 (1H, dd, $J_{7,5}$ = 2.2, $J_{7,8}$ = 8.9, H-7); 7.55 (1H, d, $J_{8,7}$ = 8.9, H-8); 3.96 (2H, t, J = 7.2, 3-CH ₂ CH ₂ CH ₃); 3.42 (3H, s, 1-CH ₃); 1.70 (2H, m, 3-CH ₂ CH ₂ CH ₃); 0.90 (3H, t, J = 7.2, 3-CH ₂ CH ₂ CH ₂)
6c	8.31 (1H, d, $J_{5,7}$ = 2.2, H-5); 8.01 (1H, dd, $J_{7,5}$ = 2.2, $J_{7,8}$ = 8.9, H-7); 7.53 (1H, d, $J_{8,7}$ = 8.9, H-8); 3.90-3.97 (2H, m, 3-C <u>H</u> ₂ C ₃ H ₇); 3.41 (3H, s, 1-CH ₃); 1.58 (2H, m, 3-CH ₂ C <u>H</u> ₂ C ₂ H ₅); 1.31 (2H, m, 3-C ₂ H ₄ C <u>H</u> ₂ CH ₃); 0.90 (3H, m, 3-C ₃ H ₆ C <u>H₃</u>)
7a	11.79 (1H, s, NH); 8.19 (1H, d, $J_{5,7}$ = 2.3, H-5); 8.02 (1H, dd, $J_{7,5}$ = 2.3, $J_{7,8}$ = 8.9, H-7); 7.54 (1H, d, $J_{8,7}$ = 8.9, H-8); 3.41 (3H, s, 1-CH ₃); 2.45 (4H, q, J = 6.9, N(CH ₂ CH ₃) ₂); 1.00 (6H, t, J = 7.2, N(CH ₂ CH ₃) ₂
7b	8.27 (1H, d, $J_{5,7}$ = 2.3, H-5); 8.02 (1H, dd, $J_{7,5}$ = 2.3, $J_{7,8}$ = 8.9, H-7); 7.55 (1H, d, $J_{8,7}$ = 8.9, H-8); 3.86 (2H, t, J = 3.6, 3-CH ₂ C ₂ H ₅); 3.48 (3H, s, 1-CH ₃); 2.45 (4H, m, N(CH ₂) ₂); 1.56 (2H, m, 3-CH ₂ CH ₂ CH ₃); 1.02 0.84 (3H t J = 7 1 3-C2H ₂ CH ₃); 1.01 (6H t J = 7 3 N(CH ₂ CH ₃);
7c	8.27 (1H, d, $J_{5,7} = 2.3$, H-5); 8.02 (1H, dd, $J_{7,5} = 2.3$, $J_{7,8} = 8.9$, H-7); 7.55 (1H, d, $J_{8,7} = 8.9$, H-8); 3.87-3.91 (2H, m, 3-CH ₂ C ₃ H ₇); 3.48 (3H, s, 1-CH ₃); 2.44 (4H, q, $J = 7.3$, N(CH ₂) ₂); 1.51-1.54 (2H, m, 3-CH ₂ CH ₂ C ₂ H ₅);
7d	1.29 (2H, m, 3-C ₂ H ₄ C <u>H₃</u> CH ₃); 1.02 (6H, t, $J = 7.3$, N(CH ₂ C <u>H₃</u>) ₂); 11.8 (1H, s, NH); 8.18 (1H, d, $J_{5,7} = 2.3$, H-5); 8.03 (1H, dd, $J_{7,5} = 2.3$, $J_{7,8} = 9.0$, H-7); 7.54 (1H, d, $J_{8,7} = 9.0$, H-8); 3.41 (3H, s, 1-CH ₃); 3.01 (4H, m, N(C <u>H₂</u>) ₂); 1.32-1.44 (4H, m, N(CH ₂ C <u>H₂</u>) ₂); 0.95-1.24 (4H, m, N(C ₂ H ₄ C <u>H₂</u>) ₂); 0.78-0.84 (6H, m, N(C ₃ H ₆ C <u>H₃</u>) ₂)
7e	8.26 (1H, d, $J_{5,7}$ = 2.3, H-5); 8.02 (1H, dd, $J_{7,5}$ = 2.3, $J_{7,8}$ = 8.9, H-7); 7.55 (1H, d, $J_{8,7}$ = 8.9, H-8); 3.88 (2H, t, J = 7.3, 3-C <u>H</u> ₂ C ₂ H ₅); 3.49 (3H, s, 1-CH ₃); 3.02-3.22 (4H, m, N(C <u>H</u> ₂) ₂); 1.56 (2H, m, 3-CH ₂ C <u>H</u> ₂ CH ₃); 1.50-1.65 (4H, m, N(CH ₂ C <u>H</u> ₂) ₂); 1.35-1.45 (4H, m, N(C ₂ H ₄ C <u>H</u> ₂) ₂); 1.23 (3H, t, J = 7.1, 3-C ₂ H ₄ CH ₃); 0.75-0.85 (6H, m, N(C ₃ H ₆ CH ₃);
7f	8.28 (1H, d, $J_{5,7}$ = 2.3, H-5); 8.02 (1H, dd, $J_{7,5}$ = 2.3, $J_{7,8}$ = 8.9, H-7); 7.55 (1H, d, $J_{8,7}$ = 8.9, H-8); 3.85-3.95 (2H, m, 3-C <u>H</u> ₂ C ₃ H ₇); 3.49 (3H, s, 1-CH ₃); 3.01-3.10 (4H, m, N(C <u>H</u> ₂) ₂); 1.50-1.60 (2H, m, 3-C <u>H</u> ₂ C <u>H</u> ₂ C ₂ H ₅); 1.36-1.46 (4H, m, N(C <u>H</u> ₂ C <u>H</u> ₂) ₂); 1.31 (2H, m, 3-C ₂ H ₄ C <u>H</u> ₂ CH ₃); 1.16-1.28 (4H, m, N(C ₂ H ₄ C <u>H</u> ₂) ₂); 0.90 (3H, m, 3-C ₃ H ₆ C <u>H</u> ₃); 0.76-0.86 (6H, m, N(C ₃ H ₆ C <u>H</u> ₃) ₂)
8a	11.83 (1H, s, NH); 8.13 (1H, d, $J_{5,7} = 2.3$, H-5); 7.96 (1H, dd, $J_{7,5} = 2.3$, $J_{7,8} = 8.7$, H-7); 7.57 (1H, d, $J_{8,7} = 8.7$, H-8); 3.59 (4H, t, $J = 6.5$, N(C <u>H</u> ₂) ₂); 3.42 (3H, s, 1-CH ₃); 2.83 (4H, t, $J = 6.9$, N(CH ₂ C <u>H</u> ₂) ₂); 2.45 (2H, m, N(C ₂ H ₄) ₂ C <u>H</u> ₂)
8b	8.20 (1H, d, $J_{5,7}$ = 2.3, H-5); 7.97 (1H, dd, $J_{7,5}$ = 2.3, $J_{7,8}$ = 8.9, H-7); 7.59 (1H, d, $J_{8,7}$ = 8.9, H-8); 3.85 (2H, t, J = 7.2, 3-C <u>H</u> ₂ C ₂ H ₅); 3.49 (3H, s, 1-CH ₃); 2.86 (4H, t, J = 6.5, N(C <u>H</u> ₂) ₂); 2.45 (4H, t, J = 6.9, N(CH ₂ C <u>H</u> ₂) ₂); 1.62 (2H, m, 3-CH ₂ C <u>H</u> ₂ CH ₃); 1.52 (2H, m, N(C ₂ H ₄) ₂ C <u>H</u> ₂); 0.85 (3H, t, J = 7.2, 3-C ₂ H ₄ C <u>H</u> ₃)

TABLE 3 (continued)

1	2
8c	8.21 (1H, d, $J_{5,7}$ = 2.3, H-5); 7.95 (1H, dd, $J_{7,5}$ = 2.3, $J_{7,8}$ = 8.7, H-7); 7.58 (1H, d, $J_{8,7}$ = 8.7, H-8); 3.90 (2H, t, J = 7.3, 3-C <u>H</u> ₂ C ₃ H ₇); 3.49 (3H, s, 1-CH ₃); 2.95 (4H, t, J = 6.5, N(C <u>H</u> ₂) ₂); 1.57 (2H, m, 3-CH ₂ C <u>H</u> ₂ C ₂ H ₅); 1.44 (4H, dt, J = 6.9, N(CH ₂ C <u>H</u> ₂) ₂); 1.31 (2H, m, 3-C ₂ H ₄ C <u>H</u> ₂ CH ₃); 1.25 (2H, m, N(C ₂ H ₄) ₂ CH ₂); 0.93 (3H, t, J = 7.1, 3-C ₃ H ₆ CH ₃)
8d	11.83 (1H, s, NH); 8.14 (1H, d, $J_{5,7}$ = 2.2, H-5); 7.97 (1H, dd, $J_{7,5}$ = 2.2, $J_{7,8}$ = 8.8, H-7); 7.6 (1H, d, $J_{8,7}$ = 8.8, H-8); 3.58 (4H, t, J = 6.0, N(C <u>H₂</u>) ₂); 3.42 (3H, s, 1-CH ₃); 2.82 (4H, t, J = 8.0, O(CH ₂) ₂)
8e	8.22 (1H, d, $J_{5,7}$ = 2.2, H-5); 7.97 (1H, dd, $J_{7,5}$ = 2.2, $J_{7,8}$ = 8.8, H-7); 7.62 (1H, d, $J_{8,7}$ = 8.8, H-8); 3.87 (2H, t, J = 7.2, 3-C <u>H</u> ₂ C ₂ H ₅); 3.58 (4H, t, J = 6.0, N(C <u>H</u> ₂) ₂); 3.50 (3H, s, 1-CH ₃); 2.82 (4H, t, J = 8.0, O(CH ₂) ₂); 1.55 (2H, q, J = 5.7, 3-CH ₂ C <u>H</u> ₂ CH ₃); 0.85 (3H, t, J = 7.2, 3-C ₂ H ₄ C <u>H</u> ₃)
8f	8.20 (1H, d, $J_{5,7}$ = 2.2, H-5); 7.96 (1H, dd, $J_{7,5}$ = 2.2, $J_{7,8}$ = 8.8, H-7); 7.61 (1H, d, $J_{8,7}$ = 8.8, H-8); 3.88 (2H, t, J = 7.3, 3-C <u>H</u> ₂ C ₃ H ₇); 3.58 (4H, t, J = 6.0, N(C <u>H</u> ₂) ₂); 3.49 (3H, s, 1-CH ₃); 2.84 (4H, t, J = 8.0, O(CH ₂) ₂); 1.52 (2H, m, 3-CH ₂ C <u>H</u> ₂ C ₂ H ₅); 1.26 (2H, m, 3-C ₂ H ₄ C <u>H</u> ₂ CH ₃); 0.85 (3H, t, J = 7.1, 3-C ₃ H ₆ C <u>H</u> ₃)

temperature for 6 h. After cooling, the organic layer was separated, washed with water until neutral and dried over Na₂SO₄. The benzene was evaporated and the residue was recrystallized. Product **2a** (1.98g 91%); mp 90-92°C (91-93° [9]) was obtained from *n*-propyl iodide, and compound **2b** (1.9 g, 82%); mp 70-72°C (71-73° [9]) from *n*-butyl iodide.

6-Chlorosulfonyl-1-methylquinazoline-2,4-dione (3a) and 3-Alkyl-6-chlorosulfonyl-1-methylquinazolin-2,4-diones 3b,c. Method A. Compounds 1 or 2a,b (10 mmol) were added in portions to chlorosulfonic acid (5.83 g, 50 mmol) at 5-10°C with stirring at such a rate that the solution temperature did not exceed 15°C. The reaction mixture was then heated to 50-60°C, kept at this temperature for 6 h and then poured over broken ice. The precipitate of 3 was filtered off, washed with water, and crystallized.

Compounds **3a-c** were also obtained from the sulfoacids **5a-c** by method B (see below).

1-Methyl-2,4-dioxoquinazoline-6-sulfoacid (5a) and 3-Alkyl-1-methyl-2,4-dioxoquinazolinesulfoacids 5b,c. A mixture of compound 3 (10 mmol) and water (20 ml) was boiled for 2 h, the solvent was partially removed, the precipitate of product 5 was filtered off and recrystallized from water.

The sulfoacids **5a-c** were treated with chlorosulfonic acid by method B to give compounds **3a-c**.

Method B. Sulfoacids 5 (10 mmol) were added in portions to chlorosulfonic acid (2.33 g, 20 mmol), cooled to 0°C, at such a rate that the temperature did not exceed 10°C. The mixture was heated to 50-60°C, kept at this temperature for 2 h and poured onto broken ice. The precipitate of compound **3** was filtered off, washed with water, and recrystallized. The yields of compounds **3a-c** were close to quantitative. Samples of compounds **3a-c**, obtained by methods A and B were identical (there was no depression of the melting point with mixed probes).

1-Methyl-6-sulfamidoquinazoline-2,4-dione (6a) and 3-Alkyl-1-methyl-6-sulfamidoquinazoline-2,4-diones 6b,c. A mixture of compound 3 (10 mmol) and concentrated ammonia solution (100 ml) was heated with stirring on a boiling water bath for 6 h then kept at room temperature for 16 h. The precipitate of compound 6 was filtered off and recrystallized.

N,N-Diethyl- and N,N-Dibutylamides of 1-Methyl-2,4-dioxoquinazoline-6-sulfoacids 7a,d and 3-Alkyl-1-methyl-2,4-dioxoquinazoline-6-sulfoacids 7b,c,e,f. Diethyl- or dibutylamine (10 mmol) and triethylamine (1.01 g, 10 mmol) in acetone (15 ml) was added dropwise to a solution of compound 3 (10 mmol) in acetone (30 ml). The reaction mixture was stirred at room temperature for 2 h, the acetone was then evaporated, and water (100 ml) was added to the residue. The precipitate of compound 7 was filtered off and recrystallized.

N-Piperidides and N-Morpholides of 1-Methyl-2,4-dioxoquinazoline-6-sulfoacids 8a,d and 3-Alkyl-1-methyl2,4-dioxoquinazoline-6-sulfoacids 8b,c,e,f were synthesized analogously to the dialkyl-amides 7a-f using piperidine (10 mmol) or morpholine (10 mmol) in place of the dialkylamines.

REFERENCES

- 1. R. Sh. Kuryazov, N. S. Mukhamedov, and Kh. M. Shakhidoyatov, *Khim. Geterotsikl. Soed.*, 420 (2008). [*Chem. Heterocycl. Comp.*, 44, 324 (2008)].
- 2. O. N. Volzhina and L. N. Yakhontov, *Khim.-farm. Zh.*, 16, No. 10, 23 (1982).
- 3. N. Tulyanov, in *Pharmacology of Natural Substances* (in Russian), FAN, Tashkent (1978), p. 56.
- 4. T. Hisano, K. Shoji, and M. Ichikawa. Org. Prep. Proceed. Int., 4, 271 (1975).
- 5. S. Johne. *Pharmazie*, **36**, 583 (1981).
- 6. L. N. Yakhontov, S. S. Liberman, L. P. Zhikhareva, and K. K. Kuz'mina, *Khim.-farm.* Zh., **11**, No. 5, 14 (1977).
- 7. N. Tulyanov, in *Pharmacology of Natural Substances* (in Russian), FAN, Tashkent (1979), p. 71.
- 8. M. Hedayatullah, J. Heterocycl. Chem., 18, 339 (1991).
- 9. B. A. Urakov, Dis. Cand. Chem. Sci., Alma-Ata (1990).